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Abstract

Air pollution is a global problem and has a severe impact on
human health. Fine-grained air quality (AQ) monitoring is
important in mitigating air pollution. However, existing AQ
station deployments are sparse. Conventional interpolation
techniques fail to learn the complex AQ phenomena. Physics-
based models require domain knowledge and pollution source
data for AQ modeling. In this work, we propose a Gaussian
processes based approach for estimating AQ. The important
features of our approach are: a) a non-stationary (NS) ker-
nel to allow input depended smoothness of fit; b) a Hamming
distance-based kernel for categorical features; and c) a locally
periodic kernel to capture temporal periodicity. We leverage
batch-wise training to scale our approach to a large amount of
data. Our approach outperforms the conventional baselines as
well as a state-of-the-art neural attention-based approach.

1 Introduction

Today, 91% of the global population lives under unsafe
levels of air quality'. Long-term exposure to PMs 5 in-
creases cardiopulmonary mortality by 6-13% per 10 ug/m3
of PMs 5, which causes yearly 8 million deaths worldwide
(Kloog et al. 2013). Air quality (AQ) is affected by mul-
tiple factors, including but not limited to physicochemical
processes, meteorological variables and the geography of
a place. Primary air pollution sources are solid fuels used
in domestic cooking, industrial plants, vehicular emissions,
roadside dust, and construction activities (Balakrishnan et al.
2019). Thus, air pollution is a complex spatio-temporal phe-
nomenon, and fine-grained AQ monitoring is essential to
make informed decisions towards air pollution mitigation.

Nations across the globe have sparse and non-uniform
AQ station deployments. Existing techniques to generate an
AQ map rely on interpolation approaches such as Kriging,
Trend, Spline, and KNN (K-nearest neighbors). Some recent
approaches have taken an entirely data-driven approach us-
ing deep learning to generate AQ maps (Cheng et al. 2018;
Xu and Zhu 2016; Zheng, Liu, and Hsieh 2013). These
methods: i) do not quantify uncertainty which may help pol-
icymakers make informed decisions; and ii) do not incorpo-
rate domain knowledge in modeling.
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Gaussian processes (GPs) are non-parametric Bayesian
models often used in environment modeling (Sampson and
Guttorp 1992). Kriging (Krige 1951) is a well-known vari-
ant of GPs in spatial modeling. GPs implicitly provide un-
certainty estimates along with predictions that can be useful
for policymakers. The key component of GPs is covariance
functions (aka kernels), which govern the characteristics of
resultant fit on the data. Based on domain knowledge, the
covariance functions can be combined to approximate un-
derlying phenomena efficiently.

Widely used GP packages (Gardner et al. 2018; GPy
since 2012) use a single length scale (a parameter governing
smoothness of fit) for multiple features by default. In prac-
tice, features can have a diverse relationship with observa-
tions, including variable or negligible prediction power. To
neglect non-useful features and have better predictions with
useful features, we use the ARD (Automatic Relevance De-
termination) feature, enabling GPs to learn the length scale
parameter individually for each feature.

Often, restrictive assumptions are made in GPs such as
stationarity (Guizilini and Ramos 2015). Stationarity means
that the covariance between two locations depends only on
the Euclidean distance between them. For air quality, it is
possible to have variable covariance for the same distance
apart locations due to geographical heterogeneity and com-
plex chemical reactions. To address this challenge, we uti-
lize an approach given by (Plagemann, Kersting, and Bur-
gard 2008) to induce non-stationarity by allowing input-
depended smoothness in model fit. Our dataset contains cat-
egorical features such as wind direction (West, East,..) which
are difficult to model with standard kernels because standard
kernels are designed to encode distance-based smoothness
in the resultant function. In contrast, categorical features do
not have a continuous space for distance calculation. To ad-
dress this problem, we use a Hamming distance-based ker-
nel (Hutter et al. 2014) that is well suited for categorical fea-
tures. Environmental processes often have periodicity in the
temporal dimension. Air pollution may have periodicity due
to specific reasons such as: i) diurnal patterns of traffic; ii)
yearly patterns of seasons and periodic nature of other mete-
orological features that affect air quality. To encode this in-
formation, we utilize periodic kernels in our model in com-
bination with other kernels.

We use the hourly air quality and meteorological data
from Beijing (Cheng et al. 2018) over a month (March-
2015) to evaluate our approaches. We compare our ap-



proach against: i) conventional spatial interpolation base-
lines such as IDW (Inverse Distance Weighting), KNN (K-
Nearest Neighbors); ii) standard machine learning models
such as XGBoost and Random Forest; and iii) a state-of-
the-art neural attention based model (Cheng et al. 2018). Our
approach outperforms the baselines giving root mean square
error (RMSE) of 24.52 compared to the best baseline (Ran-
dom Forest), giving RMSE of 26.67 in a cross-validation
setting. We analyze the effects of using various proposed
techniques and point out the strengths and weaknesses of
each method.

We believe that our approach will make uncertainty-aware
fine-grained air quality inference accurate and help policy-
makers make informed decisions to reduce air pollution.

Reproducibility Our work is fully reproducible, and the
code, data, and experiments are available at https://github.
com/patel-zeel/AAAI22.

2 Related Work

We now discuss the related work across three categories: 1)
Dispersion models; ii) AQ forecasting; and iii) AQ spatio-
temporal inference.

2.1 Dispersion models

Classical dispersion models are conventionally used to
model air quality by mathematically approximating the
physicochemical processes governing air pollution dynam-
ics. Widely used dispersion models include Gaussian plume
models, Street canyon models (Fallah-Shorshani, Shekarriz-
fard, and Hatzopoulou 2017) and computational fluid dy-
namics. These methods model air quality as a function of
meteorology, traffic volume, and emission factors based on
several empirical assumptions. These models require deep
domain expertise and non-trivial to collect and update data.
In our approach, we instead use publicly available and easily
measurable data.

2.2 Air quality forecasting

Air quality forecasting is a problem where a model predicts
air quality ¢ time-stamps in future, leveraging all available
information till the current time. It is a well-explored prob-
lem in recent times due to the rise of neural network-based
time-series modeling. Recently, (Luo et al. 2019) proposed a
KDD-18 cup winning solution for AQ forecasting. The au-
thors use a novel combination of LightGBM, Gated-DNN
and Seq2Seq models to achieve accurate estimates. Recent
work (Yi et al. 2018) proposed a deep distributed fusion
network-based method to forecast air quality on a large scale
(300+ Chinese cities). Earlier work (Zheng et al. 2015) uses
a combination of linear regression for temporal dimension
and neural network-based spatial predictor. We have used
the dataset for our work from (Zheng et al. 2015). We aim
to solve a related but different problem to infer air quality
at unmonitored locations at a given time-stamp instead of
forecasting air quality in future at the monitored locations.

2.3 AQ inference

AQ inference is a problem of modeling AQ as a function of
several features (meteorology, traffic and other features).
Previous work (Zheng, Liu, and Hsieh 2013) proposed a
co-training based method on top of a neural network and
linear-chain conditional random field (CRF) method for AQ
inference. The authors perform classification based on stan-
dard ranges of AQ levels decided by the United States En-
vironmental Protection Agency. The authors have used me-
teorological features, POIs (Points of Interests), road net-
works, traffic-related features and mobility features. We use
fewer features due to public data availability and focus on
the regression task instead of classification. Recent state-of-
the-art work (Cheng et al. 2018) propose a neural attention-
based approach to incorporate time-invariant and time-series
features together. They also learn the effect of individual
train stations on a test location via the attention net. Atten-
tion net can predict the weights associated with stations dy-
namically. We use similar features as the authors except road
networks and POIs due to the unavailability of data.

3 Problem statement

Given S air quality monitors, T time-stamps, F features (lat-
itude, longitude, temperature, humidity, weather, wind speed
and wind direction) and corresponding PMs 5 observations,
the aim is to predict PM; 5 at a new set of locations S* for
the same T time-stamps using F features.

4 Our Approach

We desire to have two main characteristics in AQ modeling:
1) uncertainty along with AQ predictions and ii) incorporat-
ing domain inspired information into the model.

In this paper, we propose Gaussian processes (GPs) based
AQ models. GPs are Bayesian non-parametric methods.
They can provide uncertainty implicitly and can also incor-
porate domain-specific information via an appropriate ker-
nel design.

We first introduce the basics of GPs, then we discuss a
limitation of standard GPs known as stationarity and how
can we overcome it with non-stationary GPs (NSGPs). Fur-
thermore, we discuss feature specific kernel design and fi-
nally, we elaborate on batch training of GPs for scalability.

4.1 Stationary GPs

GPs assume a prior distribution of functions over the obser-
vations.

f(x) ~ GP(m(x), k(x,x")) (1)
yi = f(xi) + €, €~ N(0,07) 2

where, x; € R? is a feature vector, y; € R is corresponding
observation, and ¢; is i.i.d. noise in observations with vari-
ance 0. m(x) : R? — R is the prior mean function and
k(x,x') : R* x R? — R is the prior covariance function. In
practice, we assume constant 0 mean function without loss
of generality. A well-known covariance function (kernel) is

Radial Basis Function (RBF).

—||1X; — X5 2
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Figure 1: Interpolated empirical covariance between a target
station (T) and all other stations. Two locations (A and B)
with the same distance away from T have significantly dif-
ferent covariance. Thus, stationary kernels may fail to cap-
ture such a phenomenon. We may need a non-stationary ker-
nel for such scenarios.

Where o is kernel variance and / is length scale. In the
current setting, © = {o¢,0, ¢} are the model hyperparam-
eters. Unlike most machine learning models, hyperparame-
ters are learned during the training of a GP model. The nega-
tive log marginal likelihood £(©) is minimized with respect
to n training data points (X,,,y,) to optimize the hyperpa-
rameters.

1 _ -

L(O) = 3 (yz;Km}yn + log | Kpn| + nlog(?w)) “)
Where Ky, = Kpp+021, and K,,,, = k(X,, X»). Once

the model is trained, predictive distribution of observations

for ¢ number of test points X, is given as

Jr e N(m* k) = N (K Ky yns K — KK K1)

nn

where m™ is predictive mean function and £* is predictive
covariance function and Ky, = k(Xr, Xn).

4.2 Non-stationary GPs (NSGP)

Environmental processes, in general, are highly dynamic in
nature depending on other environmental variables, the ge-
ography of a place and various other factors. For example,
temperature differences at a small distance apart would be
much higher in the hilly area than in a plain area.

We visualize the empirical covariance between a target
air quality station (T) and all other stations in Figure 1
to investigate the need for non-stationarity in model. Em-
pirical covariance was generated by computing covariance
kemp(T, s;),1 € S from corresponding PM; 5 values along
the temporal dimension. We interpolated these values with
kriging (spherical variogram) to generate a map. If we focus
on the target station T and two locations in space A and B,
notice that K (T, A) is significantly different than K (T, B)
despite both points A and B being equidistant from the tar-
get station T'.

Thus, the empirical covariance can not be modelled well
using stationary kernels, which have the form kg(x;,x;) =
f(Ix: — x4]]). Or, the covariance between two inputs de-
pends only on the distance between the two inputs (in a Eu-
clidean space) and not on the two inputs themselves. RBF
kernel in Eq. 3 is a stationary kernel. To model complex

phenomena, we may need a non-stationary kernel of form
kns(xi,x;) = f(x;,%x;) where the covariance depends
on the actual inputs x; and x;. We can also define non-
stationarity in a similar way where the covariance evaluated
at x; and x; given as: kng(x;,x;) may be unequal to the
covariance evaluated between x; + x and x; + x given as:
kns(x; +X,Xj + X).

There are multiple ways of inducing non-stationarity. In
this paper, we study non-stationarity based on length scales.
We first quickly study the effect of length scales on model
fit (functions generated from a GP).

Length scale
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Figure 2: Effect of length scale on randomly drawn functions
from a GP prior. A larger length scale allows more smooth-
ness in function. We also show a function with a variable
length scale uniformly varying from 0.01 to 2. Stationary
GPs will underfit (show high bias) if the dataset has such a
distribution.

Length scale parameter in most kernels governs the
smoothness of functions drawn from the distribution. Fig-
ure 2 shows the effect of length scale on functions drawn
from a GP prior. Large length scales imply more smoothness
in functions. In reality, a function may have variable smooth-
ness as shown by the curve corresponding to LS(X) =
0.2X. In such cases, it might be better to model length scales
as a function of input X. Now, we formally introduce the
non-stationary covariance structure.

Any stationary kernel can be converted to a non-stationary
kernel with the following kernel equation (Paciorek and
Schervish 2003)

20,0
kns(zizj) = | 5—25ks(zi, x5) @)
\/ &+ 2

Where kg is the one-dimensional non-stationary kernel
based on a one-dimensional stationary kernel kg. Note that
for a stationary kernel in Eq. 3, we had a single length scale
parameter ¢ for the whole model. In kx g, we have a sepa-
rate ¢; associated with each data point x;. While plugging
a stationary kernel kg in Eq. 5, we need to replace £? with
(€7 + €3)/2. Such a formulation is only possible if we can
have a function fy(x;) = ¢; to compute ¢; for any arbitrary
data point x;. We assume the variation in length scales to be
smooth. Thus, we can use another GP to model this smooth-
ness. However, learning length scales at all the input points
of size n would become computationally expensive.

Thus, (Plagemann, Kersting, and Burgard 2008) propose
to learn £,,, for a set of m inducing points X,,, m << n. We
use K-Means clustering with the number of clusters K =
m on individual features and choose the cluster centers as



latent locations. The second level GP (length scale GP) is
formulated as

fe(x) ~ GPi(me(x), ke(z,2")) (6)
Ei = f(xl) + 5&7 6@,‘, ~ N(()? 52) (7)

where, prior m; () is constant 0 function and k;(z, z") can
be any suitable kernel for the length scale modeling.

The combined hyperparameters for both GPs can be
tuned by maximizing log of a-posteriority probability
log p(€,,| X, y») of latent length scales. In interest of space,
as per (Plagemann, Kersting, and Burgard 2008), we pro-
vide the equations of objective function without going into
further details

1
10gp(£n|Xna€m) = _§ (log |K*nn| + nlog27r) (8)

1 . 1 -
logp(yn‘XmEn) = *5}%th}er 35 log ‘Kfm| ©)

7% log 2w
10gp(£n|Xna Yn) = Ing(yn‘Xrn Kn)‘i’

Zlogp(gﬂxjvgjvxrn) (10)
jed
Where, K,,,, is non-stationary covariance matrix for full
data (X,,yn). K", is predictive covariance matrix of
predicted length scales £,,. Eq. 5 to Eq. 8 are defined for
one-dimensional data points. For practical use in multi-
dimensional data with d dimensions, we can model length
scales for each feature dimension separately and optimize
combined hyperparameters with Eq. 10.

4.3 ARD (Automatic Relevance Determination)

Air quality datasets contain numerous types of features
which may require a separate treatment based on their range.
GPs allow learning separate length scales for individual fea-
tures with ARD functionality (automatic relevance determi-
nation). ARD is helpful in automatically choosing the useful
features and ignoring non-informative features by setting the
corresponding length scale values too high or too low during
the optimization (Rasmussen and Williams 2005).

4.4 Hamming distance based kernel for
categorical features

We have a set of categorical features present in our dataset
(wind direction and weather). Such features are often trans-
formed by one-hot-encoding before training machine learn-
ing models. For GPs, widely used kernels such as RBF are
not directly applicable to one-hot-encoded features due to
the binary nature of features. Because RBF and similar ker-
nels are designed to encode distance-based smoothness, but
we do not have a continuous feature space to make RBF
kernel effective for categorical features. Thus, we utilize a
Hamming distance-based kernel (Hutter et al. 2014), which
returns maximum correlation when categories are the same
and returns a lower correlation regulated by length scale !.

I . )
kcat (mcat7i7 xcat7j) = UJ% exp <_mmf21§;mt7) (1 ])

Where x.q,; denotes ith category in a categorical feature.
Note that kernel in Eq. 11 also avoids high dimensional fea-
ture space generated by one-hot-encoding, which may sig-
nificantly affect the computational resources required during
the training.

4.5 Local periodic kernel for temporal feature

Most environmental phenomena are periodic in the temporal
dimension. Air pollution may also exhibit periodic behavior
due to the nature of its sources and predictors. For exam-
ple, traffic has diurnal patterns, and meteorological variables
have daily and seasonal patterns. However, an exact period-
icity may not be present in practice, but it may vary smoothly
across the space. This phenomenon is known as local peri-
odicity (Duvenaud 2014). In GPs, the multiplication of two
kernels incorporates the abilities of both kernels. Thus, we
use the RBF kernel to incorporate smoothness in the period
and the Periodic kernel to model the period in the dataset.
Multiplication of these kernels is known as Local Periodic
kernel

2sin? (7|zs,; —
_ B

wt,il/p))

(12)
kLocalPer('7 ) = kPeriodic('a ) X kRBF(') ) (13)

Where, p is period learned by the periodic kernel.

. _ 2
kPeriodic(xt,ia :Lt,j) - Uf exp (

4.6 Final kernel

Finally, we use RBF or Matern kernels for continuous fea-
tures (latitude, longitude, humidity, temperature and wind
speed), Categorical kernel for categorical features (weather
and wind speed) and Local Periodic kernel for the temporal
feature. Final kernel is then of the following form:

k('y ) = O-J%k‘]\/[atern/RBF('a ')kcat('y ')kLocalPer('a )
(14)

4.7 Scalable batch training

GP training involves evaluating marginal likelihood in each
iteration which takes O(¢n?) time for n data points and ¢ it-
erations. Additionally, we need O(n?) memory to store the
covariance matrix. We have nearly 14K data points from just
a month’s data, and thus scalability is necessary to success-
fully apply GPs to our dataset. Recently, stochastic gradi-
ent descent on GPs has been proven as an effective method
for large scale regression (Chen et al. 2020). Thus, we use
batch-wise training to train non-stationary versions of our
model on multiple batches of data. We were able to run the
stationary version of the model without batched setting, and
thus we used full data for it. There are multiple ways of sam-
pling batches from the full dataset. We explore the following
batching schemes in our approach:

* Uniform sampling: We sample the data points uniformly
from the full data.

* Nearest Neighbors: We sample a random data point and
choose b points close to that point as a batch. We use
Euclidean distance to determine the close points.



* Time-split batching: We equally split our data along the
temporal dimension. In our case, we split one month’s
data into 4 parts, considering a week’s data as a batch.

Note that, assuming constant batch size in this setting,
memory requirement stays constant and compute time in-
creases linearly with an increase in the dataset.

5 [Evaluation
5.1 Dataset

Dataset details In this work, we use the hourly PMs 5 data
from 36 stations in Beijing and meteorological data (temper-
ature, humidity, pressure, wind speed, wind direction and
weather) from the stations in the same district (Cheng et al.
2018; Zheng et al. 2015). Among these features, wind direc-
tion and weather are categorical and others are continuous
features. Wind direction contains 10 categories (including
4 cardinal, 4 ordinal directions along with unstable and no
direction). Weather has 17 categories, including but not lim-
ited to rainy, foggy, sunny and dusty. The duration of the
dataset is one year (2014-05-01 to 2015-04-30). The dataset
is publicly available via the following website?. We note that
the source papers of this dataset also use other features to
model AQ such as POIs (points of interest) and road net-
works (total length of roads around a station), which are not
publicly available and thus not used in our work.

We observe a large amount of missing data in different
stations at different time intervals. To enable the comparison
with state-of-the-art neural baseline (Cheng et al. 2018), we
chose a particular month (March 2015) having the minimum
amount of missing data. We carry out a dataset preprocess-
ing step to handle further issues with the dataset, such as
missing values and anomalies.

Dataset preprocessing To address the missing entries in
the dataset, we remove the stations having a substantial
amount of missing values. 50% of stations from the dataset
have at least 60% missing values for the pressure feature.
Thus, we drop pressure from our meteorological variables.
Also, five stations (station IDs: 1009, 1013, 1015, 1020,
1021) each have merely 35% of the weather data, so we drop
these five stations from our experiments. In the remaining
data, we have at least 85% data available for all variables as
shown in Table 1. To fill in the missing data for real-valued
variables ( PMs 5, temp, humidity, and wind speed), we in-
terpolate in time. We choose the best method among these
with cross-validation on non-missing data. In previous lit-
erature, we either do not find missing data handling details
or find trivial methods such as nearest time-stamp filling for
all variables (Cheng et al. 2018). Thus, we believe that our
methodology provides a data-driven, systematic approach to
data filling. Table 1 shows the least RMSE values on five-
fold cross-validation for each of the interpolation methods
applied on each feature. To fill the missing data coming from
categorical features (wind direction and weather), we choose
the nearest timestamp value.

“https://bit.ly/38PcrbU

Methods Missing
Data Lin. Quad. Cub. data
PM, 5 16.69 18.29 18.66 3%
Temperature (T) 1.24 1.39 1.43 14%
Humidity (H) 7.57 9.21 9.49 13%
Wind speed (WS) | 3.32 429 450 13%
Weather (W) Nearest Time-stamp 15%
Wind dir. (WD) Nearest Time-stamp 14%

Table 1: All stations in our dataset have a few missing me-
teorological and PMs 5 values. To choose the best method
for filling this data with interpolation in the temporal di-
mension, we use five-fold cross-validation with non-missing
data. Linear interpolation yields the least RMSE for all the
variables, and thus we choose it to fill in the missing values.
Lin. is Linear interpolation, Quad. is Quadratic spline, and
Cub. is Cubic spline. observation filling method. Wind dir.
is wind direction.

5.2 Baselines

We compare our work against the recently published
state-of-the-art approach based on neural attention archi-
tecture (Cheng et al. 2018) and against baselines used
in previous literature IDW (Inverse Distance Weighting),
Random Forest (RF), XGBoost, KNN and Stationary
GP) (Cheng et al. 2018; Zheng, Liu, and Hsieh 2013). We
use RF, XGBoost, and KNN implementation from scikit-
learn (Pedregosa et al. 2011) library and IDW from the
Polire (Narayanan et al. 2020) library. We also note that
we baselined against other regression methods like: support
vector regression, linear regression, and decision tress, but
do not include them here as the results were comparable or
poorer than the mentioned baselines, and due to space limits.

Random Forest Random Forest is widely used and known
to perform efficiently on the non-linear regression tasks
(Fawagreh, Gaber, and Elyan 2014). It uses an ensemble of
multiple decision trees for regression such that the final out-
put is the mean of the outputs from different trees.

Inverse Distance Weighting Inverse Data Weighting
(IDW) (Lu, George Y., and David W. Wong 2008) is an in-
terpolation technique that estimates the value of an unknown
point by taking the weighted average of the known points. It
is a commonly used method in spatial interpolation litera-
ture (Ikechukwu et al. 2017). The weight is inversely pro-
portional to the distance between the point under considera-
tion and the known point. Distance is computed by £,,-norm
where exponent p can be tuned as a hyperparameter.

XGBoost Extreme Gradient Boosting or XGBoost pre-
dicts by combining the results from weaker estimators. The
algorithm makes use of gradient descent while adding new
trees while training.

K-Nearest Neighbors (KNN) Regression KNN uses
“feature similarity” to obtain the K nearest neighbors to
a test point and averages their observations to estimate the
value at the test point.



ADAIN We use the ADAIN model (Cheng et al. 2018)
which is a neural network based approach to infer the air
quality at a a local station using the data from available sta-
tions. The model uses both time-invariant and time-series
data in linear layers and recurrent neural network layers, re-
spectively. The importance of train stations in determining
the AQ of a test location is dynamically computed by an at-
tention layer. The final prediction is the weighted average of
observations from the train stations where weights are atten-
tion weights. The code for the ADAIN paper is not publicly
available, we have implemented it from scratch in Tensor-
flow.

5.3 Evaluation metric

We use the root mean squared error (RMSE) as the evalu-
ation metric for all baselines and our approach. If we have
a set of all test stations S’ and a set of time stamps 7" under
consideration, we calculate the RMSE as:

S Y (s — i)

sesSteT

RMSE =
SIIT

(15)

where, y; ) denotes ground truth observation and g )

denotes corresponding predicted values for st* station at ¢*
timestamp.

5.4 Experimental setup

We now discuss the settings and data preparation done for
each method.

Cross-validation Our experimental setup is similar to pre-
vious literature (Cheng et al. 2018). We consider an offline
learning setting where we train a single model on the whole
dataset leveraging the meteorological features and observa-
tions from the train stations. IDW and KNN are exceptions
here as they can handle spatial features only, and thus we
train and test separate models for each time-stamp. We per-
form the 3-fold outer cross-validation on all models for a fair
comparison, where each fold is split by a set of train and test
AQ stations.

Hyperparameter tuning For hyperparameter tuning on
non-GP based baselines, we carry out grid search for 5 in-
ner folds on the training data. We use the ‘GridSearchCV’
routine from scikit-learn (Pedregosa et al. 2011) to perform
the hyperparameter tuning. For Random Forest, we varied n-
estimators in the set {100, 500, 1000} and the max-depth in
{10, 50, 100, infinity }. The value of exponent in IDW was
varied for values € {0.5,1,2,3,4,5,6} in order to get the
best fit. For XGBoost, n-estimators was chosen among the
set{100, 500, 1000} and the learning-rate from {0.01, 0.05,
0.1}. The grid of n-neighbors in KNN contained the values
{2,3,5,7}. The final values of hyperparameters after tuning
are mentioned in Section 5.5.

Data preperation For distance-based models IDW and
KNN), each feature dimension is scaled between O to 1. For
the ADAIN model, we follow the data preparation as de-
scribed by (Cheng et al. 2018). The input data to ADAIN

RMSE (Lower is better)
Model Fold-1 Fold-2 Fold-3 Mean
Random Forest  25.04 2946 2553 26.67
IDW 49.11 50.00 45.18 48.09
XGBoost 34.07 3423 3325 33.85
KNN 38.09 38.85 37.02 37.98
ADAIN 30.70 3297 32.19 31.95
ANCL 37.25 3986 36.73 37.95
ANCL 23.63 2552 2597 25.04
ANCL 2224 2474  25.10 24.02
ANCL 22.60 24.96 25.27 24.28
ANCL 2409 27.83 2630 26.07
ANCL 2348  25.18 2547 2471

Table 2: Fold-wise RMSE comparison among all baselines
and our approach (combinations of various settings). Our
approach outperforms all the baselines, including a state-of-
the-art neural attention method (ADAIN). ANCL config-
uration is explained in Sectin 5.4. The bold row shows the
best approach based on minimum negative log marginal like-
lihood. The italic row shows the approach performing best
on the test dataset. We can observe that these two versions
have comparable results on the test data.

is scaled using robust scaling (dataset is scaled in a way that
the inter-quartile range is scaled between O to 1 to reduce the
effect of outliers on the scaling) on all continuous features.

We perform stationary GP regression over each dataset
fold, experimenting with different kernel functions. We
choose the kernel that yields the best training loss (in GP,
best log marginal likelihood). Note that log marginal like-
lihood can be used as a model selection strategy here, as
shown by (Fong and Holmes 2020). Due to numerical issues
and non-convexity of log marginal likelihood, hyperparame-
ter initialization plays a significant role in GP regression, as
pointed out by (Basak et al. 2021). To combat this, we use 5
random restarts of initializing hyperparameters by the stan-
dard normal distribution, allowing the model to converge at
the global optima potentially. We use BoTorch® implemen-
tation of stationary GPs.

Our Model configuration We introduce the following
configuration for our experiments and for the results shown
in Table 2. A - ARD is enabled, N - non-stationary kernel
is used, C - categorical kernel is used for categorical fea-
tures and L - Locally periodic kernel is used for time fea-
ture, A - Non-ARD version, N - Stationary kernel, C - one-
hot-encoded categorical features without Hamming distance
kernel, L - RBF/Matern kernel for time feature. We choose
the best model with minimum negative log marginal likeli-
hood (NLML).

5.5 Results and Analysis

Our main result in Table 2 shows that our approach under
the ANCL configuration (shown in bold numbers) signifi-

*https://botorch.org/



cantly improves over all the other baselines. We selected the
best configuration based on the lowest value of negative log
marginal likelihood (NLML) across all the GP based meth-
ods. The best performing approach configuration on the test
set (shown in italics) is the ANCL whose RMSE is com-
parable to the best configuration chosen as per the (NLML).
We also note that our approach with all extensions turned
on (ANCL) is only slightly worse than the best perform-
ing configuration. We believe this reduction in performance
might be due to not enough data for learning the highly so-
phisticated non-stationary kernel. We plan to study this phe-
nomenon in greater depth in the future work.

Figure 3 shows the comparison of predictions from our
ANCL with the XGBoost and the Random Forest base-
lines. Our model is able to capture the nuances of the dataset
better than the baselines.

0
b) Predicted
*] MMMW
0
c)
0

Timeline (March 2015)

PM2.5

Figure 3: Predicted PM2.5 Concentration comparison be-
tween a) our approach (ANCL), b) XGBoost, and c) Ran-
dom Forest model for a particular station data.

To interpret the model after enabling ARD, we plot opti-
mal Non-ARD length scale with ARD length scales for each
feature in Figure 4 with best method configuration: ANCL.
Magnitude of length scale gives insights into the smooth-
ness of observations in a particular feature space. For exam-
ple, PMs 5 varies slowly with wind speed but varies rapidly
with latitude. If these different relationship did not exist, we
would have learnt same lengthscale across all the features.

In the training of Non-stationary kernels, we attempted
different batching techniques as discussed in Section 4.7.
According to Table 3, Time-split batching yields the best
train loss as well as best test RMSE in our experiments. Note
that we have used the Time-split method as default in the ex-
periments presented in Table 2. Note that we have used other
batching sampling as well and results are comparable.

The following are the best hyperparameters for the mod-
els: a) SVR: kernel=‘rbf’, C=1, epsilon=0.1; b) Random
Forest: n_estimators=100, max_depth=None; c) IDW: expo-
nent=3; d) XGBoost: n_estimators=100, learning_rate=0.1;
d) KNN: n_neighbors=5; e) ADAIN: batch_size=64,
epochs=15

6 Limitations and Future Work
We now discuss limitations and the future work:

RMSE (Lower is better)
Method Fold-1 Fold-2 Fold-3 Mean
Uniform 27.63 26.97 25.67 26.76
Time split 2535 27.83 25.47 26.22
Nearest Neigh. | 24.48  28.11 2748  26.69

Table 3: Effect of batching techniques on RMSE while train-
ing the non-stationary GPs. We observe that while each
method performs well in different folds, the Time-split
method has the overall best result (based on train loss). Near-
est Neigh. is Nearest Neighbors sampling.

—— Non-ARD
I ARD

Learnt
Length Scale
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1
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Figure 4: Effect of ARD (automatic relevance determina-
tion) on length scales learned for different features. This re-
veals key information about the relationship between a fea-
ture and PMs 5. For example, PMs 5 is smoothly varying
with wind speed but varying quickly with latitude.

1. Larger data: In the current paper, we have only looked
at a single month of data for a single pollutant. This
was primarily done because some of the baselines require
large contiguous data chunks (which are unavailable and
inappropriate to fill like we did in the current work). In
the future, we plan to expand our dataset both in time and
the estimated pollutants.

2. Other non-stationary methods: In the current paper, we
looked only at a single method (length-scale based) for
inducing non-stationary behaviour. In the future, we plan
to look at other similar techniques (Heinonen et al. 2016;
Wilson et al. 2016).

3. GP Scalability: In the current paper, we have looked at
SGD based methods for scaling GPs. In the future, we
propose to also study other sparse GP methods (Snelson
and Ghahramani 2006; Titsias 2009).

7 Conclusions

Accurate air quality estimation at unmonitored locations is
an essential step towards better policy and control of air pol-
lution. Existing approaches for estimating air quality are ei-
ther white-box and require extensive emission data or en-
tirely data-driven, like neural networks. In this work, we
present Gaussian processes based approach that can leverage
domain insights such as: 1) periodicity in time; ii) the relative
importance of different features; iii) non-stationarity; and iv)
encoding categorical features. Our approach is more accu-
rate than state of the art. The uncertainty estimates in our
approach make it more beneficial to the decision-makers.
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