Program Synthesis: Does Feedback Help?

Varun Jain®, Harsh Patel®, Shivam Sahni*, Praveen Venkatesh*, Mrinal Anand, Mayank Singh
Indian Institute of Technology Gandhinagar, India

ABSTRACT

Computers are devices that execute precise instructions provided
to them using various programming languages. However, the idea
of delivering instructions to a computer through natural language
could vastly simplify the act of programming as a specific task.
Generating code from high-level descriptions for a given program
is a significantly challenging task and has been an active area of
research in the natural language processing domain. In this paper,
we present a novel feedback-based deep learning approach for
synthesizing code from human-specified descriptions. Inspired by
the dual-learning mechanism, our framework uses a feedback loss
to produce more consistent and robust predictions. We show how
our approach fares empirically on standard code generation datasets
and achieves state-of-the-art results on the NAPS (Natural Program
Synthesis) dataset.

ACM Reference Format:

Varun Jain*, Harsh Patel®, Shivam Sahni*, Praveen Venkatesh*, Mrinal Anand,
Mayank Singh . 2022. Program Synthesis: Does Feedback Help?. In
5th Joint International Conference on Data Science & Management of Data
(9th ACM IKDD CODS and 27th COMAD) (CODS-COMAD 2022), January
8-10, 2022, Bangalore, India. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3493700.3493756

1 INTRODUCTION

The need for high-quality code that adheres to a set of specified
rules is increasing every day, with more than 28.7 million develop-
ers expected to form part of the development workforce by 2024
[3]. A large part of a developer’s workday is spent on writing code
to achieve tasks that have already been used in a different context
before. This implies that the developer spends time searching for
prior solutions for a problem, which is often an arduous process.
Program synthesis is the task of generating a program that most
likely fits a given specification (provided by the user) of said pro-
gram. The verbosity of the user specification and the complexity of
generating such programs may vary widely depending on the user’s
application and level of expertise. Early attempts at program syn-
thesis are focused on search-based approaches, which try to find the
best match for a given specification via input/output pairs [1, 6, 7].
However, variations in writing style, language, expertise may lead
to incorrect inferences made by the synthesis method, leading to
ambiguities in the generated code. More modern approaches have

*The first 4 authors contributed equally, and are undergraduate students. The au-
thors can be contacted at: {varun.jain, harsh.patel, shivam.sahni, praveen.venkatesh,
mrinal.anand, singh.mayank}@iitgn.ac.in .

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODS-COMAD 2022, January 8-10, 2022, Bangalore, India

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8582-4/22/01.

https://doi.org/10.1145/3493700.3493756

resorted to deep learning-based techniques [4, 10] that attempt to
capture contextual clues provided in the input specification, re-
solving conflicts between different writing styles. However, even
with advancements in natural language understanding, the task
of program synthesis remains unsolved due to: 1) Very long-range
dependencies : code referenced in a file may have been used in
files elsewhere. Contextual clues when writing code lie not only
within the file being edited but several files in the file directory,
often spanning several million lines in large codebases. 2) Lack of
high-quality, large, real-life datasets : Most datasets available for
program synthesis are synthetic or crowdsourced. This leads to lot
of noise in the data that eventually impairs performance.

Our work takes inspiration from the concept of feedback. We
attempt to guide the model to learn better and quicker by providing
an alternate feedback path apart from a single loss based gradient-
descent. We leverage the idea of dual learning [2, 9] which utilizes
a two stage reinforcement learning framework based on Seq2Seq
networks for language-to-language translation. Our work focuses
on a supervised training framework for description to code syn-
thesis and utilizes an additional feedback similarity loss compared
between contextual embeddings of an inferred code specification,
and a ground truth code specification.

2 DATASET

1) NAPS Dataset: The NAPS dataset contains 16,410 code se-
quences and 300 synthetically generated descriptions for each code
sequence [10]. The code sequences are in Universal Abstract Syn-
tax Tree (UAST). Since the UAST trees can be converted to other
programming languages like Java and C++, the dataset is highly
generalisable. The dataset also provides test cases used to compute
the accuracy on the dataset. This dataset is highly complex, indi-
cated by its poor performance on standard Seq2Seq models [10],
and due to its large program lengths.

2) Algolisp Dataset: The Algolisp dataset contains 79,214 descrip-
tions along with code sequence in a tree format [4]. The code
sequences are written in a LISP like programming language. Akin
to NAPS, the dataset has test cases that are used to compute the
accuracy. We observe that only 89% of the code sequences in the
dataset pass their corresponding test cases provided. As a result,
as an additional metric, we also compute the exact match accuracy
which validates whether the output code is an exact match with
the ground truth.

3 OUR APPROACH

Recent works that use Seq2Seq and Seq2Tree models have achieved
good results in most NLP problems. However, for program synthe-
sis on the NAPS dataset, the Seq2Tree model currently tops the
leaderboard with a mere accuracy of 8.8% [10]. This poor perfor-
mance demonstrates a failure to interpret input code specifications
in a reasonable manner.

In our framework, we use attention-based transformer mod-
els [8] which are capable of handling long-range dependencies of


https://doi.org/10.1145/3493700.3493756
https://doi.org/10.1145/3493700.3493756
https://doi.org/10.1145/3493700.3493756

CODS-COMAD 2022, January 8-10, 2022, Bangalore, India

Loop.png
Input Stage 1 Synthesized
Descriptions Transformer Program
Feedback (Embedding)
Loss
Sentence Bert Inferred Code Stage 2
Embeddings Description Inferencing

Figure 1: Our Architecture

languages, to enhance the efficiency of this sequence-to-sequence
generation task. Figure 1 shows the two stages of our pipeline to
synthesize code from a given code specification.

The primary task of the stage-1 transformer is to translate a given
high-level code description to the desired code sequence. Stage-
2 consists of a pre-trained transformer (trained on the inverted
dataset : code to description) that converts predicted code sequences
of stage-1 back into a description. We call this prediction as the
inferred description since it captures the context of the generated
program and is inferred as the data passes through the model.

We hypothesize that if the inferred descriptions are similar to
the input descriptions, the penultimate task of code generation,
i.e., the inferences of stage-1, are accurate (close to ground truth).
Thus, we formulate a network architecture (fig 1) where the second
stage provides feedback to the first stage via a cosine-similarity
loss computed between the Sentence-Bert [5] embeddings of the
inferred code descriptions and the ground-truth code descriptions.

We formulate the loss function for training the network as
Lnew = LcE(§,y) + ALcosine(§’, %), where L is the loss function, A
is a tunable parameter, y is the ground truth code, g is the prediction
from stage-1, §’ is the embedding of the prediction from S-BERT,
X is the ground truth embedding from S-BERT, L¢E is the cross
entropy stage-1 loss function, and L¢osine is a cosine similarity
loss computed between the S-BERT embeddings of the inferred
descriptions and the ground truth descriptions.

Since the vanilla S-BERT model has been pre-trained on a differ-
ent corpus not meant for code synthesis, we fine-tune the network
specifically for our task using the training data.

4 RESULTS

Figure 2 and 3 show a summary of the results obtained by testing
our framework on Algolisp and NAPS datasets, respectively.

For the Algolisp dataset, we compare our results with a vanilla se-
quence to sequence transformer. We also apply the back-translation
technique to augment the training set for improving the perfor-
mance. As seen in the table, our approach outperforms other previ-
ously mentioned methods.

For the NAPS dataset, we compare our results with the baseline
Seq2Tree model [10] both with and without using out-of-vocabulary
(OOV) words. We achieve state-of-the-art results for the NAPS
dataset, which shows that the feedback loop provides a better en-
vironment for robust training of the principal transformer model,
ensuring that the semantic structure of the code is well-understood.
With this work, we present a significant base for further study on
the problem of program synthesis.

Varun Jain*, Harsh Patel*, Shivam Sahni*, Praveen Venkatesh*, Mrinal Anand, Mayank Singh

Model | Strategy ,,,BE‘?,",'E‘?Y, ,(,D{J‘f,‘??‘,E,‘ft,,",’T?',t,‘?h,'t'?,,s,t,,e??},,,,
10k | 20k : 40k : 60k
Transformer | Vanilla 79.31 1 931 | 9508 | 9554
Transformer | Back translation | 76.61 | 9313 | 9442 | 9533
Transformer | Ours 8897 | 9474 | 9588 | 095099

Figure 2: Results on the Algolisp dataset

Model | Stralegy Accuracy (%) _5.(;5:.".‘.@.‘.:){]:{“.?![F?.%??.P?i??ﬂ}’i.s_t?ﬂﬁ__
All cases passed 10k ! 20k 200k
Seq2Tree | Without OOV [10] 8.8
Seq2Tree | With OOV [10] 7.9
Transformer | Ours 55.36 23.64 40.23 55.36

Figure 3: Results on the NAPS dataset

5 CONCLUSION & FUTURE WORK

In recent years, there has been tremendous progress in the genera-
tion of neural programs. However, state-of-the-art models continue
to struggle with producing programs with a higher word count
because they do not understand the semantics of the generated
code. With our feedback-based pipeline, we leverage the multi-task
nature of this code generation and code summarization. We show
that the model learns and interprets the code’s semantics more
accurately through this dual learning framework, showing that
feedback does indeed help.

In the future, we plan to train the model on multiple languages,
forcing the network to learn language agnostic concepts (such as
OOP), rather than learn a combined representation of semantics
and syntax of a domain-specific language. This can potentially give
rise to a more complex understanding of the act of programming,
leading to increased accuracy of program synthesis.

REFERENCES

[1] Alan W. Biermann. 1978. The Inference of Regular LISP Programs from Examples.
IEEE Transactions on Systems, Man, and Cybernetics 8, 8 (1978), 585-600. https:
//doi.org/10.1109/TSMC.1978.4310035

[2] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-
Ying Ma. 2016. Dual Learning for Machine Translation. In Advances in Neural
Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (Eds.), Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/
paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf

[3] Shanhong Liu. 2020. Global developer population 2024. https://www.statista.
com/statistics/627312/worldwide-developer-population/

[4] Illia Polosukhin and Alexander Skidanov. 2018. Neural Program Search: Solving
Programming Tasks from Description and Examples. arXiv:1802.04335 [cs.AI]

[5] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[6] David Elliot Shaw, William R. Swartout, and C. Cordell Green. 1975. Inferring
LISP Programs from Examples. (1975). https://doi.org/10.7916/D89K4K6X

[7] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2012. Template-based
program verification and program synthesis. International Journal on Software
Tools for Technology Transfer 15, 5-6 (Jan. 2012), 497-518. https://doi.org/10.1007/
$10009-012-0223-4

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762

[9] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a

Dual Task of Code Summarization. In Advances in Neural Information Processing

Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and

R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

Maksym Zavershynskyi, Alex Skidanov, and Illia Polosukhin. 2018. NAPS: Natural

Program Synthesis Dataset. arXiv:1807.03168 [cs.LG]

[10


https://doi.org/10.1109/TSMC.1978.4310035
https://doi.org/10.1109/TSMC.1978.4310035
https://proceedings.neurips.cc/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://arxiv.org/abs/1802.04335
https://doi.org/10.7916/D89K4K6X
https://doi.org/10.1007/s10009-012-0223-4
https://doi.org/10.1007/s10009-012-0223-4
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1807.03168

	Abstract
	1 Introduction
	2 Dataset
	3 Our Approach
	4 Results
	5 Conclusion & Future Work
	References

